
An approach to : Inborn Errors of Metabolism

Dr.Binod Kumar Singh

Professor of Pediatrics, Patna Superintendent NMCH Patna-2020-2022 IAP State President, Bihar- 2019 IAP State Vice-President, Bihar- 2018 CIAP Executive board member-2015 NNF State president, Bihar- 2014 IAP State secretary, Bihar-2010-2011 NNF State secretary, Bihar-2008-2009 Fellow of Indian Academy of Pediatrics (FIAP)

Chief Consultant Shiv Shishu Hospital K-208, P.C Colony, Hanuman Nagar, Patna - 800020 Web site : www.shivshishuhospital.org,Mob:-9431047667

- Disorders in which there is a block in normal metabolic pathway that is caused by genetic defect of a specific enzyme.
- Defect can be inherited or sporadic in nature.
- Deficiency of enzymes causes :
- 1.Decreased production / Absence of product
- 2.Excess of metabolites
- 3. Formation of abnormal mediators

When to suspect IEMS?

- Deterioration after a period of apparent normalcy
- Parental consanguinity
- Family history of neonatal deaths
- Rapidly progressive encephalopathy and seizures of unexplained cause
- Severe metabolic acidosis
- Persistent vomiting
- Peculiar odor(especially in urine)
- Acute fatty liver or HELLP during pregnancy

Clinical pointers towards specific IEM

Hepatomegaly	Storage disorders, urea cycle defect					
Coarse facies	Mucopolysaccharidosis, GM1 gangliosides, Pompe's disease					
Cataract	Galactosemia(oil drop), Wilson (sunflower)					
Cherry red spot	Tay Sach's disease , Niemann pick dis , GM1 Gangliosidosis					
Hypopigmentation	PKU , Albinism					
Renomegaly	Von Gierke disease, Zellweger syndrome					
Skin rash / eczema	Biotinase deficiency, Multiple carboxylase deficiency					
Cardiomyopathy Retinitis pigmentosa	Pompe's dis , FAO defect , Mitochondrial ETC defect Mitochondrial disorder					

Abnormal urine odors

Mousy odor	Phenylketonuria
Rancid	Tyrosinemia
Sweaty feet	Isovaleric acidemia
Cabbage like	Methionine defect
Tom cat urine	Multiple carboxylase deficiency
Sweet smell	Ketones
Maple syrup	MSUD

Patterns of presentation

- Encephalopathy with or without metabolic acidosis
- predominant features of
 - organic acidemias,
 - -urea cycle defects , and
 - congenital lactic acidosis .

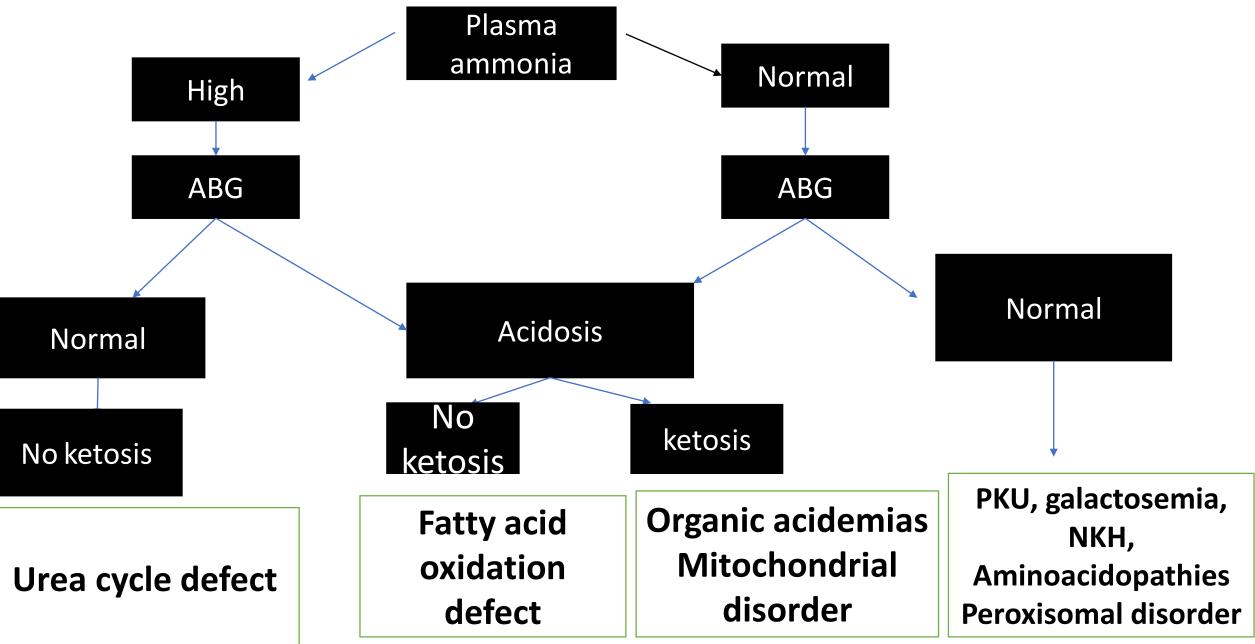
Intractable seizures

- -Pyridoxine dependency,
- non ketotic hyperglycemia,
- -folinic acid responsive seizures

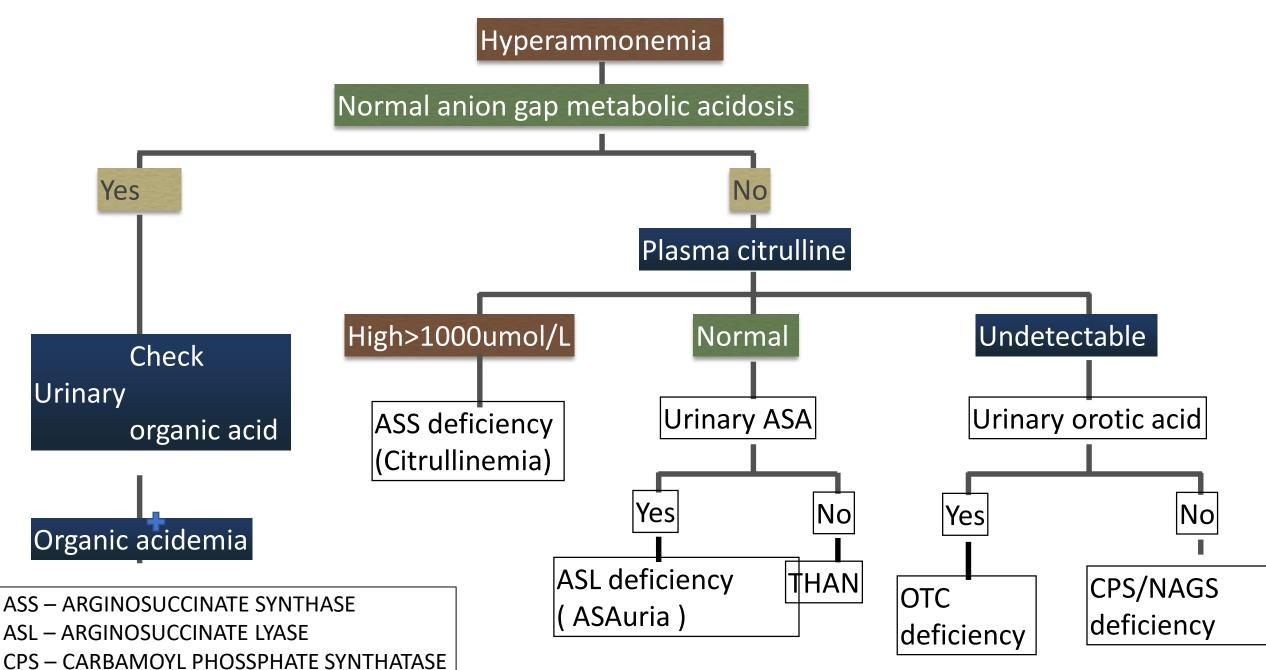
Patterns of presentation

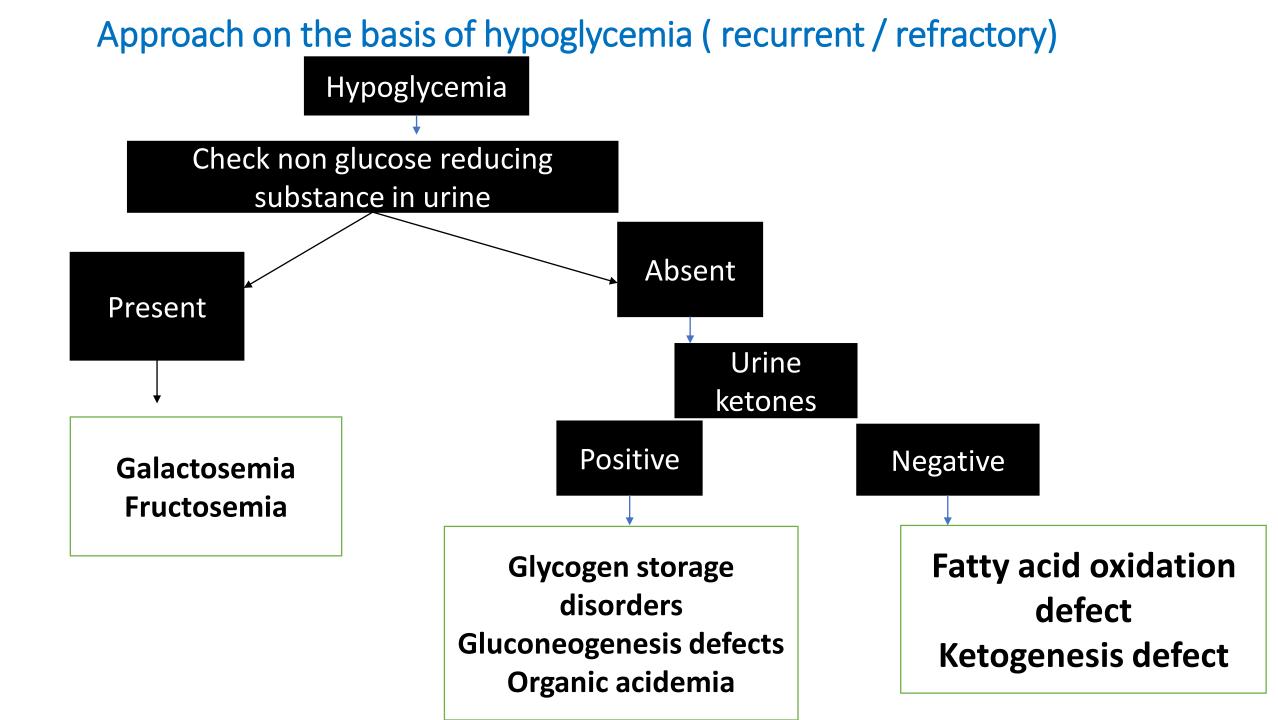
- Jaundice alone Gilbert syndrome , Criggler najjar syndrome
- Hepatic failure (jaundice, ascites, coagulopathy)- Galactosemia, Tyrosinemia, GSD – type 4
- Neonatal cholestasis Alpha -1 antitrypsin def , Niemann pick disease.
- Hypoglycemia Galactosemia , GSD , disorder of gluconeogenesis, FAO defects .

Screening for neonatal IEM(DBS method)


Dried blood spot is obtained by heel pad prick.

The dried blood spot is subjected to TMS.


First line investigation important for developing approach


- CBC (neutropenia & thrombocytopenia seen in Propionic & Methylmalonic acidemia)
- blood glucose, ABG with lactate levels & Anion gap
- Serum electrolytes
- Plasma ammonia
- Serum uric acid
- Liver function test
- Urine ketones
- Urine reducing substances

Approach to IEM on the basis of ammonia level

> Approach to symptomatic Hyperammonemia :

Differential diagnosis of metabolic disorders :

Diagnosis	Acidosis	Ketosis			Plasma Glucose
Aminoacidopathies	+/-	+	N	N	N
Organic Acidemia	+++	+++	Inc.	lnc.	Dec.
Mitochondrial disorders	+	+/-	+++	N	N
Urea cycle disorders	N	N	N	+++	N
Fatty acid oxidation defect	+/-	N 1 3	+/-	-	Dec.

Second line investigation(ancillary and confirmatory test)

1.Urine gas chromatography mass spectrometry(urine GCMS) – Organic acidemias.

2.Plasma tandem mass spectrometry(plasma TMS)- for diagnosis of urea cycle defect ,FAD defects , Organic acidemias , Amino – acidopathies.

3.High performance liquid chromatography (HPLC) : for quantitative analysis of amino acids in blood or urine ; required for diagnosis of organic acidemia and Aminoacidopathies.

4. Lactate/pyruvate ratio - in case of elevated lactate.

5. Urinary orotic acid - in case of hyperammonemia for classification of urea cycle defect.

6. Enzyme assay: required for definitive diagnosis but not available for most IEM

Biotinidase assay - suspected biotinidase deficiency (intractable seizures, seborrheic rash, alopecia)
GALT (G-1-P uridyltransferase) assay - suspected Glactosemia (hypoglycemia, cataract, reducing sugar in urine)

7.Neuroimaging : MRI may provide helpful pointers

Zellweger syndrome : diffuse cortical migration and sulcation abnormalities.

Menke's disease/pyruvate de carboxylase deficiency - agenesis of corpus callosum.

MSUD - brain stem and cerebellar lesion.

8. Magnetic resonance spectroscopy : lactate peak in mitochondrial disorders and leucine peak in MSUD.

9. EEG : can be suggestive of IEM : E.g. comb like rhythm in MSUD

10. Plasma very long chain fatty acid (VLCFA) : elevated in peroxisomal disorders.

- 11. Mutation analysis
- 12. CSF amino acid analysis

CSF glycine level increased in NKH

serine level increased in disorder of serine biosynthesis

Biochemical Autopsy :

Done in **severely ill or dying child** with suspected but undiagnosed IEM. **SPECIMEN :**

- Clinical photograph and infantogram
- Blood : 5ml in heparin, separated and stored -70C ; 5-10 ml EDTA blood (CBC), refrigerated and not frozen ; few blood spots on filter paper (acyl carnitine analysis).
- Urine : 5-10 ml frozen in plain sterile tubes.

- Cerebrospinal fluid : 3-5 ml in 1-2 aliquots frozen and stored at -70C
- Skin biopsy : ~3mm diameter of skin (including dermis) from flexor aspect of the forearm or anterior thigh. Stored at 37C or refrigerated in culture medium or saline with glucose.
- Liver, Muscle, Kidney, Heart biopsy : At least 2 tissue biopsies of about 1mm3, one immediately frozen in liquid nitrogen and other in glutaraldehyde.

Principles of Management :

Specific treatment is directed towards reversing the basic pathophysiological process causing the disease.

It includes :-Reduction of substrate accumulation for a deficient enzyme

- Reduce accumulated toxic metabolites
- Replace deficit enzyme
- Residual enzyme activity enhancement

Management of hyperammonemia :

1.Stop oral feed and provide adequate calories by i.v glucose and lipids. Maintain GIR 8-10 mg/kg/min. Start i.v lipid 0.5 g/kg/day(upto 3g/kg/day). After stabilization add protein 0.25g/kg upto 1.5g/kg/day.

2.Hemodialysis is initiated if plasma ammonia 500 - 600ug/dL for rapid removal.

3. Alternative pathways for **nitrogen excretion**-:

Sodium benzoate (IV or oral)- loading dose 250 mg/kg then 250-400 mg/kg/day in 4 divided doses.

Sodium phenyl butyrate -loading dose 250 mg/kg followed by 250-500 mg/kg/day.

L-arginine (oral or IV)- 300 mg/kg/day

Acute management of newborn with suspected organic acidemia

1) The patient is kept NPO and IV glucose is provided.

2) Supportive care: hydration, treatment of sepsis, seizures, ventilation.

3) Carnitine: 100 mg/kg/day IV or oral.

4) Treat acidosis: Sodium bicarbonate 0.35-0.5mEq/kg/hr (max 1-2mEq/kg/hr)
5) Start Biotin 10 mg/day orally.

6) Start Vitamin B12- 1-2 mg/day I/M (useful in B12 responsive forms of methylmalonic acidemias)

7) Start Thiamine 300 mg/day (useful in thiamine-responsive variants of MSUD

Management of congenital lactic acidosis :

1) Supportive care: hydration, treatment of sepsis, seizures, ventilation. Avoid sodium valproate.

2) Treat acidosis: sodium bicarbonate 0.35-0.5mEq/kg/hr (max 1-2mEq/kg/hr)

3) Thiamine: up to 300 mg/day in 4 divided doses.

4) Riboflavin: 100 mg/day in 4 divided doses.

- 5) Add co-enzyme Q: 5-15 mg/kg/day
- 6) L-carnitine: 50-100 mg/kg orally.

7) Biotin 10 mg/day. (Biotin responsive Multiple carboxylase deficiency may present with unexplained lactic acidosis)

<u>Treatment of newborn with refractory seizures with no obvious</u> <u>etiology (suspected metabolic etiology) :</u>

1) In persistent SZ inspite of 2 or 3 AED in adequate doses, consider trial of pyridoxine 100 mg IV. If IV prep not available, oral pyridoxine can be given (15 mg/kg/day).

2) If SZ persist despite pyridoxine, give trial of biotin 10 mg/day and folinic acid 5mg twice daily (folinic acid responsive seizures). Trial of pyridoxal phosphate 10 mg/kg/dose X 2 doses is also recommended.

3) Rule out glucose transporter defect: measure CSF and blood glucose. In glucose transporter defect, CSF glucose level is equal to or less than 1/3rd of the blood glucose level. This disorder responds to the ketogenic

Prevention :

Genetic counselling and prenatal diagnosis:

- Most of the IEM are single gene defects,
- inherited in an autosomal recessive manner, with a 25% recurrence risk.
- prenatal diagnosis can be offered
- samples required are chorionic villus tissue or amniotic fluid.
 Modalities available are:
- Substrate or metabolite detection: useful in phenylketonuria, peroxisomal defects.
- Enzyme assay: useful in lysosomal storage disorders like Niemann-Pick disease, Gaucher disease.
- **DNA based (molecular) diagnosis**: Detection of mutation in proband/ carrier parents is a prerequisite.

IEM is not a rare disease.

High index of suspicion is a key factor for the diagnosis of IEM.

Routine screening of all NB for at least 6 Common IEMS should be done.

TFT

Galactosemia

CAH

PKU

Biotinase deficiency

G6PD deficiency

